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Computational Applied Mathematics

Computational Applied Mathematics
@ 45 hours

o 3 hours per week (classes of 3 hours)

o First part: 1h:15min
e Break: 30min
e Second part: 1h:15min

o Passive and Active Learning

.
Computational Applied Mathematics is a field that applies advanced
mathematical models, computational methods, and high-performance
computing to solve complex real-world problems in science, engineering, and
other subject areas. )
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Computational Applied Mathematics (100% [20/20])

Frequencies (100% [20/20])
o Frequency 1 (50% [10/20]) (17/11/2025)
o Frequency 2 (50% [10/20]) (21/01/2026)

or

o Exam (100% [20,/20])

There is a minimum of [5/20] values for any component of the evaluation. [10/20] is required to pass.
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Introduction

Taylor Series

s Theorem for f(x)

If the function f possesses continuous derivatives of orders 0, 1, 2, ...

interval I = [a, b], then for any ¢ and z in I,

where the error term FE,; can be given in the form

IERIG

ri) &

En+1 -

Here £ is a point that lies between ¢ and z and depends on both.

, (n+1) in a closed

(1)
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Introduction

Taylor Series

’s Theorem for f(x + h)

If the function f possesses continuous derivatives of orders 0, 1, 2, ..., (n+ 1) in a closed
interval T = [a, b], then for any ¢ and « in I,

" fk)
fetn =3 m, @
k=0 ’

where h is any value such that x + h is in I and where

f(n+1) (5) e

Eppy =
T 1)

for some & between z and = + h.

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics



Introduction

Taylor Series

Pause for example
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Introduction

Taylor Series

Pause for exercices

FEzxercises
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Numerical Differentiation

First-Derivative Formulas via Taylor Series

First Derivative Approximation

! 1 h2 "
F(@) = o [z + b~ flz — ]~ o 7 (¢) @
2
F@) = oz [f(@— 2h) — 4f(@ — ) + 3F(@) + = " (8) ®
F(@) = o [-3f(@) + 4z + 1) — flz + 2] + = ) )
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Numerical Differentiation

Second-Derivative Formulas via Taylor Series

Second Derivative Approximation

1

7) = 33 [f(@) = 2f(z + h) + f(2 +2R)] = hf"(€) (12)
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Numerical Differentiation

Derivative Approximations

Pause for example
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Zeros, Maximums and Minimums of Functions

Zeros

The Bolzano Theorem
If f is a continuous function on the closed interval [a, b] and f(a) - f(b) < 0, then

dc € [a,b] : f(c) = 0. (13)

The Rolle Theorem
If f is a continuous function on the closed interval [a, b], differentiable in ]a, b[ and

£(a) = £(b), then

Je €la, b]: f'(c) = 0. (14)

Computational Applied Mathematics
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Zeros, Maximums and Minimums of Functions

Zeros

Bisection Method

At each step in this algorithm, we have an interval [a, b] and the values u = f(a) and
v = f(b). The numbers u and v satisfy uv < 0.

1
Next, we construct the midpoint of the interval, ¢ = i(a +b), and compute w = f(c).

Compute wu and if:

o wu < 0, we store the value of ¢ in b and w in v.
e wu > 0, we store the value of ¢ in @ and w in u.

This step can now be repeated until the interval is satisfactorily small, say

lb—a|l<e (15)
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Zeros, Maximums and Minimums of Functions

Zeros

Bisection Method Theorem

If the bisection algorithm is applied to a continuous function f on an interval [a, b], where
f(a)f(b) < 0, then, after n steps, an approximate root will have been computed with
error at most (b — a)/2" 1.

If an error tolerance has been prescribed in advance, it is possible to determine the number
of steps required by solving the following inequality for n:

b—a
W<€ (16)

log(b — a) — log(2¢)
n> log 2 (17)
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Zeros, Maximums and Minimums of Functions

Bisection Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Zeros

False Position (Regula Falsi) Method

Rather than selecting the midpoint of each interval, as observed in the bisection method,
this method uses the point where the secant lines intersect the z-axis.

@ At the k' step, it computes
ar f(bk) — bi.f (ax)

= Fow) — Flax) (18)

@ Compute f(ag)f(ck) and if

o f(ar)f(ck) >0, set ax+1 = cx and by1 = by,
° f(ak)f(ck) < 0, set ag+1 = ar and bry1 = Ck.-

© The process is repeated until the root is approximated sufficiently well.

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics



Zeros, Maximums and Minimums of Functions

False Position Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Zeros

Newton Method (or Newton-Raphson Iteration)

Suppose again that xg is an initial approximation to a root of f. We ask: What
correction h should be added to zy to obtain the root precisely? Obviously, we want

f(zo+h)=f(z1) =0 (19)
f(z1) = f(xo) + (w1 — 20) f(20) + ... =0 (20)
f(l‘g) + hfl(xo) +..=0 (21)
Ignoring all but the first two terms in the series
/ o o f(zo)
f(zo) +hf (mo)_O:h__f’(xo) (22)J
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Zeros, Maximums and Minimums of Functions

Zeros

Newton Method (or Newton-Raphson Iteration)

Recursive Definition
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Zeros, Maximums and Minimums of Functions

Newton’s Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Zeros
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Zeros, Maximums and Minimums of Functions

Secant Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Roots of Equations

Pause for exercices

FEzxercises
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Zeros, Maximums and Minimums of Functions

Maximums and Minimums

Golden Section Search

It = [ag, by]
ck:bk—r(bk—ak) and dk:ak—i—r(bk—ak), k=0,1,... (31)
flew) < fldi) = Tes1 = lak, di] (32)
flew) > f(dr) = It = [cx, bi] (33)
Ea(-%'k) < (1 — T)(bk — ak) (34)
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Zeros, Maximums and Minimums of Functions

Golden Section Search

Pause for example

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mather



Zeros, Maximums and Minimums of Functions

Maximums and Minimums

Quadratic Interpolation Method

£(2) = F&°) + J/@*) @ = 2*) + 5@ = 2 4 (3)

f(z) =f(x*)+%f/'(w*)(w—x*)er“' (36)

. _ f(xkﬂ)(x%—l - m%) + f(mk,l)(m% - x%_2) + f(xk)(xﬁ—z - m%—1)
M 2 (wh_2)(@h1 — 7k) + 2f (Th—1) (@k — Th—2) + 2F (@) (@h—2 — Tk_1)

k=23,...
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Zeros, Maximums and Minimums of Functions

Quadratic Interpolation Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Maximums and Minimums

Newton’s Method

As seen before, the Newton’s method can be used to locate the roots of equations using

ITpt+1 = Tn — f’(SL‘ )
n

(38)

The same recurrence relation can be applied to find a minimum by locating the zero of
the first derivative rather than the zero of the function itself.

Newton’s Method for Minimization
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Zeros, Maximums and Minimums of Functions

Newton’s Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Minimization of Functions
Pause for exercices

FEzxercises
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Gauss Elimination

o Naive Gaussian Elimination - Naive Gaussian Elimination is a method for
solving a system of linear equations by transforming the coefficient matrix into an
upper triangular form using forward elimination, and then solving for the unknowns
using back substitution.

o Gaussian Elimination with Partial Pivoting - Gaussian elimination with
partial pivoting selects the pivot row to be the one with the maximum pivot entry in
absolute value from those in the leading column of the reduced submatrix. Two rows
are interchanged to move the designated row into the pivot row position.

o Gaussian Elimination with Complete Partial Pivoting - Gaussian elimination
with complete pivoting selects the pivot entry as the maximum pivot entry from all
entries in the submatrix. (This complicates things because some of the unknowns are
rearranged.) Two rows and two columns are interchanged to accomplish this.
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

a1 a2 a1z - G| |71 by
a1 G2 G23 - Q2n| | T2 by
as; aszx a3z - a3p| | T3 b3
(2751 ;2 a;3 Ain Ty bz
LGn1l  Qnp2 Gp3 - Onn| | Tn| _bn_
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Elimination

The basic forward elimination procedure using equation k to operate on equations
k+1,k+2,...,nis

“ﬂ> a;  (k<j<n)
Ak

b; < b; — (a““> b
Ak

Qij < Q5 — (

with agr # 0.
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Gauss Elimination
The basic back substitution starts by solving the nth equation for z,, as

We continue working upward, recovering each x; by the formula

1 n
Ty = — bi—Zaijxj i=n—-1,n—-2, ..., 1)
j=it+1
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Linear and Non-Linear Systems of Equations

Gauss Elimination

Pause for example
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Gauss-Jordan Elimination

Used to solve systems of linear equations and to find the inverse of any invertible matrix
a1 a2 -+ aip |1 0 0 O
a1 a2 -+ axxp [0 1 0 O
[AlI] = .
00 -0
anp1  Qp2 - Apn 0 0 0 1
b
1 0 0 0 a1 12 e A1p
01 0 O0fan ax -+ an
(7147 = :
00 .0
0 0 0 1| an ang - o
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Linear and Non-Linear Systems of Equations

Gauss-Jordan Elimination

Pause for example
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Linear and Non-Linear Systems of Equations

Linear System of Equations

Pause for exercices

FEzxercises
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

LU Decomposition

d
8
Il
x
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

If A is a real, symmetric (A = AT), and positive definite matrix (z¥ Az > 0), then it has
a unique factorization A = LL”, in which L is lower triangular with a positive diagonal.
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Linear and Non-Linear Systems of Equations

Matrix Decomposition

Pause for example
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Izl =3 le Il =

Matrix Norms

[A]l, = max Zlaul 1Al p =

1<j<n
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Linear and Non-Linear Systems of Equations

Vector and Matrix Norms

Pause for example
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Condition Number and Ill-Conditioning

An important quantity that has some influence in the numerical solution of a linear
system Ax = b is the condition number, which is defined as

K(A) = | All, || A7,

If the linear system is sensitive to perturbations in the elements of A, or to perturbations
of the components of b, then this fact is reflected in A having a large condition number.
In such a case, the matrix A is said to be ill-conditioned. Briefly, the larger the condition
number, the more ill-conditioned the system.
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Jacobi Method

Convergence Theorem

If A is diagonally dominant, then the Jacobi method converges for any

starting vector z(?).
n
lasil > las|
j=1

J#i
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Linear and Non-Linear Systems of Equations

Jacobi Method

Pause for example
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Gauss-Seidel Method

Convergence Theorem

If A is diagonally dominant, then the Gauss-Seidel method converges for

any starting vector z(?).
n

laiil > > lai]

j=1
J7#i
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Linear and Non-Linear Systems of Equations

Gauss-Seidel Method

Pause for example

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mather



Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Newton’s Method

fi(zi,22,...,28) =0

In(zi,22,...,28) =0

Using vector notation, we can write this system in a more elegant form
F(X)=0

by defining column vectors

[fla.fZ)"' afN]T

F =
X = [.’II]_,(L'Q,"' 7xN]T
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Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Newton’s Method

The extension of Newton’s method for nonlinear systems is
X (k+1) — x (k) _ [F’ (X(k))] - F (X(k)> , (46)

where F’ (X(k)) is the Jacobian matrix. In practice one solves the Jacobian linear

system
P (x) = e ()

using Gaussian elimination and then finds the next iterate from the equation

X+ — x (k) 4 ) (47)

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics



Linear and Non-Linear Systems of Equations

Numerical Solutions of Systems of Equations

Ozy Owy Oy

O0xr1 Oxg oz,

Ofn Ofn = Ofn
_8.%'1 8:]52 8-Tn—
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Linear and Non-Linear Systems of Equations

Non-Linear Systems of Equations

Pause for example
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Linear and Non-Linear Systems of Equations

Non-Linear Systems of Equations

Pause for exercices

FEzxercises
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Interpolation & Approximation

Polynomial Interpolation

Linear Interpolation
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Interpolation & Approximation

Polynomial Interpolation

Lagrange Polynomial

where .
zz<x>=H(“Ij) (0<i<n) (51)
" LUZ'—(EJ‘
7=0
J#i
o= (22) (22) - (25 () - (22) o
Z; — o T; — a1 T — Ti—1 Ti — Ti41 Tj — Tp
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Interpolation & Approximation

Polynomial Interpolation

Newton Polynomial

where .
mi(z) = [ (@ — ;) (54)
§=0
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Interpolation & Approximation

Polynomial Interpolation

Divided Differences

an = [ [xo, 21, .., Tp] (56)

where f [xg,Z1,...,%,] is called the divided difference of order n.
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Interpolation & Approximation

Polynomial Interpolation

Divided Differences

aog = flzo] = f (o) (59)
= flao,z] = 12 T20) (60)
T Zo
f(z2) — f(21)  f(z1) — f(@o)
az = f[l'(),xlng] = T2 — 1 Z1— %o (61)

T2 — Zo
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Interpolation & Approximation

Polynomial Interpolation
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Interpolation & Approximation

Polynomial Interpolation

Natural Cubic Spline

1 0 1T 20 ] [0 T
ho U7 hl zZ1 (%
hi uz  hs ) U
= . (66)
hn—2 Un—1 hn—l Zn—1 Un—1
i 0 1 || zn | | 0 |
hi =tiy1 —ti (67) ve =6(0 —bi-1) (69)
1
w; = 2(hi—1 + hy) (68) b; = E(yi—’_l — i) (70)
v V.

Emanuel A. R. Camacho (ISEC Lisboa)
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Interpolation & Approximation

Polynomial Interpolation

Natural Cubic Spline

vl D i M

hi =tiy1 — t; (72)

4
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Interpolation & Approximation

Approximation

Method of Least Squares

p(@) = Y aipile) (74)

where
{@O(x)’wl(x)a""@n(x)} (75)

is a set of basis functions.
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Interpolation & Approximation

Approximation

Method of Least Squares

vo(wo) ®1(z0) -+ wu(T0) ag f(xo0)
po(x1)  pi(z1) oo palz) | Jar| | flz1)
o(@m) ®1(Tm) 0 @n(Tm)]| lon f(zn)

Az =b (76)

AT = (AT A)1AT (77)

z=A"b (78)
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Numerical Integration

Closed Newton-Cotes Rules

b
/ f(z) dz (79)

Here, a = o, b =2, h = (b—a)/n, x; = ©g +ih, for i =0,1,...,n, where h = (b—a)/n,
fi = f(z;), and a = zp < £ < x,, = b in the error terms.

Trapezoid Rule:

[ s@ o= 5hlfo+ 1l - 5557 (50)
Simpson’s 1/3 Rule:
| f@ e = gl + 44+ - gohr0©) &)
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Numerical Integration

Closed Newton-Cotes Rules

Simpson’s 3/8 Rule:

o3 3 3
/ f(@)dz = 2hlfo+3f1 +3f2+ fs] = 5P FO () (82)
Zo
Boole’s Rule:
= 2 8
/ f(z)de = Eh[% +32f1 + 12fy + 32f3 + Tf4] — %fﬁf@ &) (83)
xo
Six-Point Newton-Cotes Closed Rule:
/% F@)do = ——h[19f0 + T5f1 + 50f> + 50fs + T5f4 + 19f5] — ——RTFO)(g) (84)
o “o2sg Y ! ? ° ! > 12096
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Numerical Integration

Open Newton-Cotes Rules

b
/ f(z) dw (85)

Here, a = xg, b=z, h = (b—a)/n, x; = 2o +ih, for i = 0,1,...,n, where h = (b—a)/n,
fi=f(z:), and a = 29 < £ < 2, = b in the error terms.

Midpoint Rule:

| f@ds=omfi+ 300 (56)
Two-Point Newton-Cotes Open Rule:
| 1@ s =Snif+ £+ 3551€) (57)
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Numerical Integration

Open Newton-Cotes Rules

Three-Point Newton-Cotes Open Rule:
ol 4 28 5 ()
f(z)dz = Shi2fi = fa + 2fs] + 55h° () (88)
o
Four-Point Newton-Cotes Open Rule:
= 5 9 5 )
f@)dz = —h[11f1 + fo+ f5 + 11 fa] + ——h° F*7(€) (89)
20 24 144
Five-Point Newton-Cotes Open Rule:

[ @) e = G~ 1afa 260~ 14fi4 1115) - TR0 (00)
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Numerical Integration

Composite Newton-Cotes Formulas

Composite Trapezoidal Rule

b
h
/a fz)de ~

Composite Simpson’s Rule (Simpson’s 1/3 Rule)

n—1 b

F@)+2 7 fan) + 0| = 5= h2F"(8) (o1)
k=1

For even number of subintervals n

b n—1 n—2 o
[t@dong |f@+a 3 fay+z > s+ 10| - it ©2
@ k=1,3,5,... k=2,4,6,
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Ordinary Differential Equations

Initial-Value Problem

In this chapter, we concentrate on one type of differential equation and one type of
auxiliary condition: the initial-value problem for a first-order differential equation. The
standard form that has been adopted is

{:l:’zf(t,m) (93)

z(a) is given

It is understood that x is a function of ¢, so the differential equation is written in more
detail looks like: da(t)

x

S (0) (94

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics



Ordinary Differential Equations

Taylor Series Methods

Its principle is to represent the solution of a differential equation locally by a few terms
of its Taylor series.

z(t+h) =z(t) + ha'(t)+

12// 13/// 14(4) 1m(m)
+§hx(t)+§hx (t)-l-ﬂh:c (t)+"'+ﬁh o™ () + -+ (95)

For numerical purposes, the Taylor series truncated after m + 1 terms enables us to
compute z(t 4 h) rather accurately if h is small and if 2(t), 2/(t), 2" (t), ..., 2™ (t) are
known. When only terms through 2™z("™ (t)/m! are included in the Taylor series, the
method that results is called the Taylor series method of order m.
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Ordinary Differential Equations

Euler Method

The Taylor series method of order 1 is known as Euler’s method. To find approximate
values of the solutions to the initial-value problem

"= f(t,x(¢
{x F(t, (1)) (96)
z(a) =z,
over the interval [a, b], the first two terms in the Taylor series (95) are used:
x(t + h) ~ z(t) + ha'(t) (97)
Hence, the formula
z(t 4+ h) = x(t) + hf (t,z(t)) (98)

can be used to step from t = a to t = b with n steps of size h = (b — a)/n.
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Ordinary Differential Equations

One-Step Methods

Runge-Kutta Methods

The methods named after Carl Runge and Wilhelm Kutta are designed to imitate the
Taylor series method without requiring analytic differentiation of the original differential
equation.

The resulting second-order Runge-Kutta method is

z(t+h) = z(t) + %(Kl + K5) (99)
where
K; = hf(t,x)
{ (100)
Ky =hf(t+h, v+ K)
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Ordinary Differential Equations

One-Step Methods

Runge-Kutta Methods

The classical fourth-order Runge-Kutta method uses the following formulas:

1
x(t—i—h) :x(t)+6(K1+2K2+2K3+K4) (101)
where
Kl = hf(t,],‘)
1 1
K2 = hf <t+ —h, % - —K1>
i i (102)

K4:hf(t+h, £L'-|—K3)
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Ordinary Differential Equations

Multistep Methods

The Adams-Bashforth-Moulton methods are a family of predictor-corrector numerical
techniques used for solving ordinary differential equations (ODEs). The Adams-Bashforth
method provides an initial guess for the new value. The Adams-Moulton method then
corrects this guess to improve accuracy.

Adams-Bashforth-Moulton Methods

o Second-order multistep method

F(t+h) = 2(t) + g(&f(t, 2(t) = f(t = h,a(t — 1)) (103)

2(t + h) = z(t) + g(f(t + @t + h) + f(t,2(2)) ) (104)
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Ordinary Differential Equations

Multistep Methods

Adams-Bashforth-Moulton Methods

@ Third-order multistep method

F(t+h) = 2(t) + 1—h2 (23f(t,a:(t)) —16£(t — h,2(t — 2h))

+5F(t—2h, a(t — 2h))) (105)

2(t+h) = z(t) + 1—}; <5f(t + R, &t + h)) + 8£(t, z(t))

— f(t = h,a(t—h))) (106)
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Ordinary Differential Equations

Multistep Methods

Adams-Bashforth-Moulton Methods

o Fourth-order multistep method
F(t+h) = 2(t) + % (55f(t,a:(t)) — 59f(t — h,x(t — h))
+ 3TF(t — 2h, x(t — 2h)) — Of (t — 3h, z(t — 3h))) (107)

ot +h) = 2(t) + 2 <9f(t + by #(t+ R)) + 19£(t, z(t))

T

—5f(t — h,z(t — h)) + F(t — 2h, x(t 2h))) (108)
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Ordinary Differential Equations

Systems of Ordinary Differential Equations

.%/1 = fl(t,l‘l,xg, 000 ,xn)
xh = fo(t,x1,T2,...,2y)
(109)
= falt, 1,20, .., 2y)
z1(a) = s1, x2(a) = Sz, ..., xx(a) = s, all given
x1 $I1 fi S1
A
T2 ) fa S2
X=| X =" F=|" S = (110)
Tn x/n fn Sn
W
Emanuel A. R. Camacho
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Ordinary Differential Equations

Systems of Ordinary Differential Equations

m-order Taylor Series method

X(t+h) = X(t) + hX(t) + h;X(t)” o =X ()™ (111)

X(t +h) = X( ) %(Kl + 2K5 + 2K3 + K4) (112)
z)

(113)

t+1/2h, X + 1/2hKy)

F(t,
F(t +1/2h, X + 1/2hK;)
F(
F(t + h, X + hKs)
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Ordinary Differential Equations

Systems of Ordinary Differential Equations

4™ _order Adams-Bashforth-Moulton method
o Adams-Bashforth method (predictor)

X(t+h) = X(t) + 2—2 (55F(t, X (1)) — 59F(t — h, X(t — h))

+ 3TF(t — 2h, X(t — 2h)) — OF(t — 3h, X(t — 3h))) (114)

e Adams-Moulton method (corrector)

X(t+h) = X(t) + 2—}1 (9F(t +h, X (t + h)) + 19F (¢, X (t))

— 5F(t — h, X(t — h)) + F(t — 2h, X(t — 2h))) (115)
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