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Computational Applied Mathematics

Computational Applied Mathematics

45 hours

3 hours per week (classes of 3 hours)

First part: 1h:15min
Break: 30min
Second part: 1h:15min

Passive and Active Learning

Computational Applied Mathematics is a field that applies advanced
mathematical models, computational methods, and high-performance
computing to solve complex real-world problems in science, engineering, and
other subject areas.
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Evaluation

Computational Applied Mathematics (100% [20/20])

Frequencies (100% [20/20])

Frequency 1 (50% [10/20]) (17/11/2025)

Frequency 2 (50% [10/20]) (21/01/2026)

or

Exam (100% [20/20])

Exam (100% [20/20])

There is a minimum of [5/20] values for any component of the evaluation. [10/20] is required to pass.
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Introduction
Taylor Series

Taylor’s Theorem for f(x)

If the function f possesses continuous derivatives of orders 0, 1, 2, . . . , (n+ 1) in a closed
interval I = [a, b], then for any c and x in I,

f(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k + En+1, (1)

where the error term En+1 can be given in the form

En+1 =
f (n+1)(ξ)

(n+ 1)!
(x− c)n+1. (2)

Here ξ is a point that lies between c and x and depends on both.

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 8 / 88



Introduction
Taylor Series

Taylor’s Theorem for f(x+ h)

If the function f possesses continuous derivatives of orders 0, 1, 2, . . . , (n+ 1) in a closed
interval I = [a, b], then for any c and x in I,

f(x+ h) =

n∑
k=0

f (k)(c)

k!
hk + En+1, (3)

where h is any value such that x+ h is in I and where

En+1 =
f (n+1)(ξ)

(n+ 1)!
hn+1. (4)

for some ξ between x and x+ h.
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Introduction

Taylor Series

Pause for example
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Introduction

Taylor Series

Pause for exercices

Exercises
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Numerical Differentiation
First-Derivative Formulas via Taylor Series

First Derivative Approximation

f ′(x) =
1

h
[f(x+ h)− f(x)]− h

2
f ′′(ξ) (5)

f ′(x) =
1

h
[f(x)− f(x− h)] +

h

2
f ′′(ξ) (6)

f ′(x) =
1

2h
[f(x+ h)− f(x− h)]− h2

6
f ′′′(ξ) (7)

f ′(x) =
1

2h
[f(x− 2h)− 4f(x− h) + 3f(x)] +

h2

3
f ′′′(ξ) (8)

f ′(x) =
1

2h
[−3f(x) + 4f(x+ h)− f(x+ 2h)] +

h2

3
f ′′′(ξ) (9)
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Numerical Differentiation
Second-Derivative Formulas via Taylor Series

Second Derivative Approximation

f ′′(x) =
1

h2
[f(x− h)− 2f(x) + f(x+ h)]− h2

12
f (4)(ξ) (10)

f ′′(x) =
1

h2
[f(x− 2h)− 2f(x− h) + f(x)] + hf ′′′(ξ) (11)

f ′′(x) =
1

h2
[f(x)− 2f(x+ h) + f(x+ 2h)]− hf ′′′(ξ) (12)
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Numerical Differentiation

Derivative Approximations

Pause for example
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Zeros, Maximums and Minimums of Functions
Zeros

The Bolzano Theorem

If f is a continuous function on the closed interval [a, b] and f(a) · f(b) < 0, then

∃c ∈ [a, b] : f(c) = 0. (13)

The Rolle Theorem

If f is a continuous function on the closed interval [a, b], differentiable in ]a, b[ and
f(a) = f(b), then

∃c ∈]a, b[: f ′(c) = 0. (14)
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Zeros, Maximums and Minimums of Functions
Zeros

Bisection Method
1 At each step in this algorithm, we have an interval [a, b] and the values u = f(a) and

v = f(b). The numbers u and v satisfy uv < 0.

2 Next, we construct the midpoint of the interval, c =
1

2
(a+ b), and compute w = f(c).

3 Compute wu and if:

wu < 0, we store the value of c in b and w in v.
wu > 0, we store the value of c in a and w in u.

4 This step can now be repeated until the interval is satisfactorily small, say

|b− a| ≤ ε (15)
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Zeros, Maximums and Minimums of Functions
Zeros

Bisection Method Theorem

If the bisection algorithm is applied to a continuous function f on an interval [a, b], where
f(a)f(b) < 0, then, after n steps, an approximate root will have been computed with
error at most (b− a)/2n+1.

If an error tolerance has been prescribed in advance, it is possible to determine the number
of steps required by solving the following inequality for n:

b− a

2n+1
< ε (16)

n >
log(b− a)− log(2ε)

log 2
(17)
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Zeros, Maximums and Minimums of Functions

Bisection Method

Pause for example

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 19 / 88



Zeros, Maximums and Minimums of Functions
Zeros

False Position (Regula Falsi) Method

Rather than selecting the midpoint of each interval, as observed in the bisection method,
this method uses the point where the secant lines intersect the x-axis.

1 At the kth step, it computes

ck =
akf(bk)− bkf(ak)

f(bk)− f(ak)
(18)

2 Compute f(ak)f(ck) and if

f(ak)f(ck) > 0, set ak+1 = ck and bk+1 = bk
f(ak)f(ck) < 0, set ak+1 = ak and bk+1 = ck.

3 The process is repeated until the root is approximated sufficiently well.
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Zeros, Maximums and Minimums of Functions

False Position Method

Pause for example
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Zeros, Maximums and Minimums of Functions
Zeros

Newton Method (or Newton-Raphson Iteration)

Suppose again that x0 is an initial approximation to a root of f . We ask: What
correction h should be added to x0 to obtain the root precisely? Obviously, we want

f(x0 + h) = f(x1) = 0 (19)

f(x1) = f(x0) + (x1 − x0)f
′(x0) + ... = 0 (20)

f(x0) + hf ′(x0) + ... = 0 (21)

Ignoring all but the first two terms in the series

f(x0) + hf ′(x0) = 0⇒ h = − f(x0)

f ′(x0)
(22)

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 22 / 88



Zeros, Maximums and Minimums of Functions
Zeros

Newton Method (or Newton-Raphson Iteration)

h = − f(x0)

f ′(x0)
(23)

x1 = x0 + h = x0 −
f(x0)

f ′(x0)
(24)

Recursive Definition

xn+1 = xn −
f(xn)

f ′(xn)
(25)
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Zeros, Maximums and Minimums of Functions

Newton’s Method

Pause for example
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Zeros, Maximums and Minimums of Functions
Zeros

Secant Method

xn+1 = xn −
f(xn)

f ′(xn)
(26)

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
(27)

f ′(xn) ≈
f(xn)− f(xn−1)

xn − xn−1
(28)

Recursive Definition

xn+1 = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn) (29)

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 25 / 88



Zeros, Maximums and Minimums of Functions

Secant Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Roots of Equations

Pause for exercices

Exercises
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Zeros, Maximums and Minimums of Functions
Maximums and Minimums

Golden Section Search

r =

√
5− 1

2
(30)

Ik = [ak, bk]

ck = bk − r(bk − ak) and dk = ak + r(bk − ak), k = 0, 1, . . . (31)

f(ck) < f(dk)⇒ Ik+1 = [ak, dk] (32)

f(ck) > f(dk)⇒ Ik+1 = [ck, bk] (33)

Ea(xk) ≤ (1− r)(bk − ak) (34)
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Zeros, Maximums and Minimums of Functions

Golden Section Search

Pause for example

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 29 / 88



Zeros, Maximums and Minimums of Functions
Maximums and Minimums

Quadratic Interpolation Method

f(x) = f(x∗) + f ′(x∗)(x− x∗) +
1

2
f ′′(x∗)(x− x∗)2 + · · · (35)

f(x) = f(x∗) +
1

2
f ′′(x∗)(x− x∗)2 + · · · (36)

xk+1 =
f(xk−2)(x

2
k−1 − x2

k) + f(xk−1)(x
2
k − x2

k−2) + f(xk)(x
2
k−2 − x2

k−1)

2f(xk−2)(xk−1 − xk) + 2f(xk−1)(xk − xk−2) + 2f(xk)(xk−2 − xk−1)
(37)

k = 2, 3, . . .

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 30 / 88



Zeros, Maximums and Minimums of Functions

Quadratic Interpolation Method

Pause for example
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Zeros, Maximums and Minimums of Functions
Maximums and Minimums

Newton’s Method
As seen before, the Newton’s method can be used to locate the roots of equations using

xn+1 = xn −
f(xn)

f ′(xn)
(38)

The same recurrence relation can be applied to find a minimum by locating the zero of
the first derivative rather than the zero of the function itself.

Newton’s Method for Minimization

xn+1 = xn −
f ′(xn)

f ′′(xn)
(39)
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Zeros, Maximums and Minimums of Functions

Newton’s Method

Pause for example
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Zeros, Maximums and Minimums of Functions

Minimization of Functions

Pause for exercices

Exercises
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Gauss Elimination
Naive Gaussian Elimination - Naive Gaussian Elimination is a method for
solving a system of linear equations by transforming the coefficient matrix into an
upper triangular form using forward elimination, and then solving for the unknowns
using back substitution.

Gaussian Elimination with Partial Pivoting - Gaussian elimination with
partial pivoting selects the pivot row to be the one with the maximum pivot entry in
absolute value from those in the leading column of the reduced submatrix. Two rows
are interchanged to move the designated row into the pivot row position.

Gaussian Elimination with Complete Partial Pivoting - Gaussian elimination
with complete pivoting selects the pivot entry as the maximum pivot entry from all
entries in the submatrix. (This complicates things because some of the unknowns are
rearranged.) Two rows and two columns are interchanged to accomplish this.

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 36 / 88



Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Gauss Elimination

Ax = b



a11 a12 a13 · · · a1n
a21 a22 a23 · · · a2n
a31 a32 a33 · · · a3n
...

...
...

. . .
...

ai1 ai2 ai3 · · · ain
...

...
...

. . .
...

an1 an2 an3 · · · ann





x1

x2

x3

...
xi

...
xn


=



b1
b2
b3
...
bi
...
bn


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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Gauss Elimination
The basic forward elimination procedure using equation k to operate on equations
k + 1, k + 2, . . . , n is 

aij ← aij −
(
aik
akk

)
akj (k ≤ j ≤ n)

bi ← bi −
(
aik
akk

)
bk

with akk ̸= 0.
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Gauss Elimination
The basic back substitution starts by solving the nth equation for xn as

xn =
bn
ann

We continue working upward, recovering each xi by the formula

xi =
1

aii

bi −
n∑

j=i+1

aijxj

 (i = n− 1, n− 2, . . . , 1)
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Linear and Non-Linear Systems of Equations

Gauss Elimination

Pause for example
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Gauss-Jordan Elimination
Used to solve systems of linear equations and to find the inverse of any invertible matrix

[A|I] =


a11 a12 · · · a1n 1 0 0 0
a21 a22 · · · a2n 0 1 0 0
...

...
. . .

... 0 0
. . . 0

an1 an2 · · · ann 0 0 0 1


↓

[I|A−1] =


1 0 0 0 α11 α12 · · · α1n

0 1 0 0 α21 α22 · · · α2n

0 0
. . . 0

...
...

. . .
...

0 0 0 1 αn1 αn2 · · · αnn


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Linear and Non-Linear Systems of Equations

Gauss-Jordan Elimination

Pause for example
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Linear and Non-Linear Systems of Equations

Linear System of Equations

Pause for exercices

Exercises

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 43 / 88

https://www.earc96.com/ISEC/2025_2026/ComputationalAppliedMathematics/Exercises/exercices.pdf


Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

LU Decomposition

Ax = b

LUx = b

Lz = b

Ux = z
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Cholesky Decomposition

If A is a real, symmetric (A = AT ), and positive definite matrix (xTAx > 0), then it has
a unique factorization A = LLT , in which L is lower triangular with a positive diagonal.

ℓ11 =
√
a11

ℓ1j =
a1j
ℓ11

, j = 2, . . . , n

ℓjj =

√√√√ajj −
j−1∑
k=1

u2
kj , j = 2, . . . , n

ℓij =
1

ℓii

(
i−1∑
k=1

ukiukj

)
, i = 2, . . . , n, j = i+ 1, . . . , n uij = 0, i > j
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Linear and Non-Linear Systems of Equations

Matrix Decomposition

Pause for example
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Vector Norms

∥x∥1 =

n∑
i=1

|xi| ∥x∥2 =

√√√√ n∑
i=1

x2
i

∥x∥∞ = max
1≤i≤n

|xi|

Matrix Norms

∥A∥1 = max
1≤j≤n

n∑
i=1

|aij | ∥A∥F =

√√√√ n∑
i=1

n∑
j=1

a2ij ∥A∥∞ = max
1≤i≤n

n∑
j=1

|aij |
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Linear and Non-Linear Systems of Equations

Vector and Matrix Norms

Pause for example
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Condition Number and Ill-Conditioning

An important quantity that has some influence in the numerical solution of a linear
system Ax = b is the condition number, which is defined as

κ(A) = ∥A∥2
∥∥A−1

∥∥
2

If the linear system is sensitive to perturbations in the elements of A, or to perturbations
of the components of b, then this fact is reflected in A having a large condition number.
In such a case, the matrix A is said to be ill-conditioned. Briefly, the larger the condition
number, the more ill-conditioned the system.
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Jacobi Method

x
(k)
i =

− n∑
j=1
j ̸=i

(
aij
aii

)
x
(k−1)
j +

(
bi
aii

) (1 ≤ i ≤ n) (40)

Convergence Theorem

If A is diagonally dominant, then the Jacobi method converges for any
starting vector x(0).

|aii| >
n∑

j=1
j ̸=i

|aij |

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 50 / 88



Linear and Non-Linear Systems of Equations

Jacobi Method

Pause for example
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Gauss-Seidel Method

x
(k)
i =

− n∑
j=1
j<i

(
aij
aii

)
x
(k)
j −

n∑
j=1
j>i

(
aij
aii

)
x
(k−1)
j +

(
bi
aii

) (41)

Convergence Theorem

If A is diagonally dominant, then the Gauss-Seidel method converges for
any starting vector x(0).

|aii| >
n∑

j=1
j ̸=i

|aij |
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Linear and Non-Linear Systems of Equations

Gauss-Seidel Method

Pause for example
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Newton’s Method 
f1(x1, x2, . . . , xN ) = 0

...
fN (x1, x2, . . . , xN ) = 0

(42)

Using vector notation, we can write this system in a more elegant form

F(X) = 0 (43)

by defining column vectors
F = [f1, f2, · · · , fN ]T (44)

X = [x1, x2, · · · , xN ]T (45)
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Newton’s Method
The extension of Newton’s method for nonlinear systems is

X(k+1) = X(k) −
[
F′
(
X(k)

)]−1

F
(
X(k)

)
, (46)

where F′ (X(k)
)
is the Jacobian matrix. In practice one solves the Jacobian linear

system [
F′
(
X(k)

)]
H(k) = −F

(
X(k)

)
using Gaussian elimination and then finds the next iterate from the equation

X(k+1) = X(k) +H(k) (47)
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Linear and Non-Linear Systems of Equations
Numerical Solutions of Systems of Equations

Jacobian Matrix

F′(X) =



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fn
∂x1

∂fn
∂x2

· · · ∂fn
∂xn


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Linear and Non-Linear Systems of Equations

Non-Linear Systems of Equations

Pause for example
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Linear and Non-Linear Systems of Equations

Non-Linear Systems of Equations

Pause for exercices

Exercises
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Interpolation & Approximation
Polynomial Interpolation

Linear Interpolation

x x0 x1 · · · xn

y y0 y1 · · · yn

p(x) =

(
x− x1

x0 − x1

)
y0 +

(
x− x0

x1 − x0

)
y1 (48)

= y0 +

(
y1 − y0
x1 − x0

)
(x− x0) (49)
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Interpolation & Approximation
Polynomial Interpolation

Lagrange Polynomial

pn(x) =

n∑
i=0

ℓi(x)f(xi) (50)

where

ℓi(x) =

n∏
j=0
j ̸=i

(
x− xj

xi − xj

)
(0 ≤ i ≤ n) (51)

ℓi(x) =

(
x− x0

xi − x0

)(
x− x1

xi − x1

)
· · ·
(

x− xi−1

xi − xi−1

)(
x− xi+1

xi − xi+1

)
· · ·
(

x− xn

xi − xn

)
(52)

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 61 / 88



Interpolation & Approximation
Polynomial Interpolation

Newton Polynomial

pn(x) =

n∑
i=0

aiπi(x) (53)

where

πi(x) =

i−1∏
j=0

(x− xj) (54)

p(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0) · · · (x− xn−1) (55)

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 62 / 88



Interpolation & Approximation
Polynomial Interpolation

Divided Differences

an = f [x0, x1, . . . , xn] (56)

where f [x0, x1, . . . , xn] is called the divided difference of order n.

f [x0, x1, . . . , xn] =

n∑
j=0

f(xj)
n∏

k=0
k ̸=j

(xj − xk)

(57)
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Interpolation & Approximation
Polynomial Interpolation

Divided Differences

f [x0, x1, . . . , xn] =

n∑
j=0

f(xj)
n∏

k=0
k ̸=j

(xj − xk)

(58)

a0 = f [x0] = f(x0) (59)

a1 = f [x0, x1] =
f(x1)− f(x0)

x1 − x0
(60)

a2 = f [x0, x1, x2] =

f(x2)− f(x1)

x2 − x1
− f(x1)− f(x0)

x1 − x0

x2 − x0
(61)
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Interpolation & Approximation
Polynomial Interpolation

Natural Cubic Spline

S(x) =


S0(x) (t0 ≤ x ≤ t1)

S1(x) (t1 ≤ x ≤ t2)
...

...

Sn−1(x) (tn−1 ≤ x ≤ tn)

(62)

S(ti) = yi (0 ≤ i ≤ n) (63)

lim
x→t−i

S(k)(ti) = lim
x→t+i

S(k)(ti) (k = 0, 1, 2) (64)

S′′(t0) = S′′(tn) = 0 (65)
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Interpolation & Approximation
Polynomial Interpolation

Natural Cubic Spline

1 0
h0 u1 h1

h1 u2 h2

. . .
. . .

. . .

hn−2 un−1 hn−1

0 1





z0
z1
z2
...

zn−1

zn


=



0
v1
v2
...

vn−1

0


(66)

hi = ti+1 − ti (67)

ui = 2(hi−1 + hi) (68)

vi = 6(bi − bi−1) (69)

bi =
1

hi
(yi+1 − yi) (70)
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Interpolation & Approximation
Polynomial Interpolation

Natural Cubic Spline

Si(x) =
zi+1

6hi
(x− ti)

3 +
zi
6hi

(ti+1 − x)3+

+

(
yi+1

hi
− hi

6
zi+1

)
(x− ti) +

(
yi
hi
− hi

6
zi

)
(ti+1 − x) (71)

hi = ti+1 − ti (72)

Emanuel A. R. Camacho (ISEC Lisboa) Computational Applied Mathematics 2024/2025 67 / 88



Interpolation & Approximation
Approximation

Method of Least Squares

f(x) ≈ p(x) (73)

p(x) =

n∑
i=0

aiφi(x) (74)

where
{φ0(x), φ1(x), . . . , φn(x)} (75)

is a set of basis functions.
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Interpolation & Approximation
Approximation

Method of Least Squares
φ0(x0) φ1(x0) · · · φn(x0)
φ0(x1) φ1(x1) · · · φn(x1)

...
...

. . .
...

φ0(xm) φ1(xm) · · · φn(xm)



a0
a1
...
an

 =


f(x0)
f(x1)

...
f(xn)


Ax = b (76)

A+ = (ATA)−1AT (77)

x = A+b (78)
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Numerical Integration
Closed Newton-Cotes Rules

∫ b

a

f(x) dx (79)

Here, a = x0, b = xn, h = (b− a)/n, xi = x0 + ih, for i = 0, 1, . . . , n, where h = (b− a)/n,
fi = f(xi), and a = x0 < ξ < xn = b in the error terms.

Trapezoid Rule: ∫ x1

x0

f(x) dx =
1

2
h[f0 + f1]−

1

12
h3f ′′(ξ) (80)

Simpson’s 1/3 Rule:∫ x2

x0

f(x) dx =
1

3
h[f0 + 4f1 + f2]−

1

90
h5f (4)(ξ) (81)
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Numerical Integration
Closed Newton-Cotes Rules

Simpson’s 3/8 Rule:∫ x3

x0

f(x) dx =
3

8
h[f0 + 3f1 + 3f2 + f3]−

3

80
h5f (4)(ξ) (82)

Boole’s Rule:∫ x4

x0

f(x) dx =
2

45
h[7f0 + 32f1 + 12f2 + 32f3 + 7f4]−

8

945
h7f (6)(ξ) (83)

Six-Point Newton-Cotes Closed Rule:∫ x5

x0

f(x) dx =
5

288
h [19f0 + 75f1 + 50f2 + 50f3 + 75f4 + 19f5]−

275

12096
h7f (6)(ξ) (84)
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Numerical Integration
Open Newton-Cotes Rules

∫ b

a

f(x) dx (85)

Here, a = x0, b = xn, h = (b− a)/n, xi = x0 + ih, for i = 0, 1, . . . , n, where h = (b− a)/n,
fi = f(xi), and a = x0 < ξ < xn = b in the error terms.

Midpoint Rule: ∫ x2

x0

f(x) dx = 2hf1 +
1

24
h3f ′′(ξ) (86)

Two-Point Newton-Cotes Open Rule:∫ x3

x0

f(x) dx =
3

2
h[f1 + f2] +

1

4
h3f ′′(ξ) (87)
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Numerical Integration
Open Newton-Cotes Rules

Three-Point Newton-Cotes Open Rule:∫ x4

x0

f(x) dx =
4

3
h[2f1 − f2 + 2f3] +

28

90
h5f (4)(ξ) (88)

Four-Point Newton-Cotes Open Rule:∫ x5

x0

f(x) dx =
5

24
h[11f1 + f2 + f3 + 11f4] +

95

144
h5f (4)(ξ) (89)

Five-Point Newton-Cotes Open Rule:∫ x6

x0

f(x) dx =
6

20
h[11f1 − 14f2 + 26f3 − 14f4 + 11f5]−

41

140
h7f (6)(ξ) (90)
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Numerical Integration
Composite Newton-Cotes Formulas

Composite Trapezoidal Rule∫ b

a

f(x) dx ≈ h

2

[
f(a) + 2

n−1∑
k=1

f(xk) + f(b)

]
− b− a

12
h2f ′′(ξ) (91)

Composite Simpson’s Rule (Simpson’s 1/3 Rule)

For even number of subintervals n∫ b

a

f(x) dx ≈ h

3

f(a) + 4

n−1∑
k=1,3,5,...

f(xk) + 2

n−2∑
k=2,4,6,...

f(xk) + f(b)

− b− a

180
h4f (4)(ξ) (92)
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Ordinary Differential Equations

Initial-Value Problem
In this chapter, we concentrate on one type of differential equation and one type of
auxiliary condition: the initial-value problem for a first-order differential equation. The
standard form that has been adopted is{

x′ = f(t, x)

x(a) is given
(93)

It is understood that x is a function of t, so the differential equation is written in more
detail looks like:

dx(t)

dt
= f(t, x(t)) (94)
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Ordinary Differential Equations

Taylor Series Methods

Its principle is to represent the solution of a differential equation locally by a few terms
of its Taylor series.

x(t+ h) = x(t) + hx′(t)+

+
1

2!
h2 x′′(t) +

1

3!
h3 x′′′(t) +

1

4!
h4 x(4)(t) + · · ·+ 1

m!
hm x(m)(t) + · · · (95)

For numerical purposes, the Taylor series truncated after m+ 1 terms enables us to
compute x(t+ h) rather accurately if h is small and if x(t), x′(t), x′′(t), . . . , x(m)(t) are
known. When only terms through hmx(m)(t)/m! are included in the Taylor series, the
method that results is called the Taylor series method of order m.
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Ordinary Differential Equations

Euler Method
The Taylor series method of order 1 is known as Euler’s method. To find approximate
values of the solutions to the initial-value problem{

x′ = f(t, x(t))

x(a) = xa

(96)

over the interval [a, b], the first two terms in the Taylor series (95) are used:

x(t+ h) ≈ x(t) + hx′(t) (97)

Hence, the formula
x(t+ h) = x(t) + hf

(
t, x(t)

)
(98)

can be used to step from t = a to t = b with n steps of size h = (b− a)/n.
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Ordinary Differential Equations
One-Step Methods

Runge-Kutta Methods

The methods named after Carl Runge and Wilhelm Kutta are designed to imitate the
Taylor series method without requiring analytic differentiation of the original differential
equation.
The resulting second-order Runge-Kutta method is

x(t+ h) = x(t) +
1

2
(K1 +K2) (99)

where {
K1 = hf(t, x)

K2 = hf (t+ h, x+K1)
(100)
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Ordinary Differential Equations
One-Step Methods

Runge-Kutta Methods

The classical fourth-order Runge-Kutta method uses the following formulas:

x(t+ h) = x(t) +
1

6
(K1 + 2K2 + 2K3 +K4) (101)

where 

K1 = hf(t, x)

K2 = hf

(
t+

1

2
h, x+

1

2
K1

)
K3 = hf

(
t+

1

2
h, x+

1

2
K2

)
K4 = hf (t+ h, x+K3)

(102)
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Ordinary Differential Equations
Multistep Methods

The Adams-Bashforth-Moulton methods are a family of predictor-corrector numerical
techniques used for solving ordinary differential equations (ODEs). The Adams-Bashforth
method provides an initial guess for the new value. The Adams-Moulton method then
corrects this guess to improve accuracy.

Adams-Bashforth-Moulton Methods
Second-order multistep method

x̃(t+ h) = x(t) +
h

2

(
3f(t, x(t))− f(t− h, x(t− h))

)
(103)

x(t+ h) = x(t) +
h

2

(
f(t+ h, x̃(t+ h)) + f(t, x(t))

)
(104)
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Ordinary Differential Equations
Multistep Methods

Adams-Bashforth-Moulton Methods
Third-order multistep method

x̃(t+ h) = x(t) +
h

12

(
23f(t, x(t))− 16f(t− h, x(t− 2h))

+ 5f(t− 2h, x(t− 2h))
)

(105)

x(t+ h) = x(t) +
h

12

(
5f(t+ h, x̃(t+ h)) + 8f(t, x(t))

− f(t− h, x(t− h))
)

(106)
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Ordinary Differential Equations
Multistep Methods

Adams-Bashforth-Moulton Methods
Fourth-order multistep method

x̃(t+ h) = x(t) +
h

24

(
55f(t, x(t))− 59f(t− h, x(t− h))

+ 37f(t− 2h, x(t− 2h))− 9f(t− 3h, x(t− 3h))
)

(107)

x(t+ h) = x(t) +
h

24

(
9f(t+ h, x̃(t+ h)) + 19f(t, x(t))

− 5f(t− h, x(t− h)) + f(t− 2h, x(t− 2h))
)

(108)
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Ordinary Differential Equations
Systems of Ordinary Differential Equations



x′
1 = f1(t, x1, x2, . . . , xn)

x′
2 = f2(t, x1, x2, . . . , xn)

...

x′
n = fn(t, x1, x2, . . . , xn)

x1(a) = s1, x2(a) = s2, . . . , xn(a) = sn all given

(109)

X =


x1

x2

...
xn

 X′ =


x′
1

x′
2
...
x′
n

 F =


f1
f2
...
fn

 S =


s1
s2
...
sn

 (110)
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Ordinary Differential Equations
Systems of Ordinary Differential Equations

m-order Taylor Series method

X(t+ h) = X(t) + hX(t)′ +
h2

2
X(t)′′ + · · ·+ hm

m!
X(t)(m) (111)

4th-order Runge-Kutta method

X(t+ h) = X(t) +
h

6
(K1 + 2K2 + 2K3 +K4) (112)

K1 = F(t, x)

K2 = F(t+ 1/2h,X+ 1/2hK1)

K3 = F(t+ 1/2h,X+ 1/2hK2)

K4 = F(t+ h,X+ hK3)

(113)
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Ordinary Differential Equations
Systems of Ordinary Differential Equations

4th-order Adams-Bashforth-Moulton method

Adams-Bashforth method (predictor)

X̃(t+ h) = X(t) +
h

24

(
55F(t,X(t))− 59F(t− h,X(t− h))

+ 37F(t− 2h,X(t− 2h))− 9F(t− 3h,X(t− 3h))
)

(114)

Adams-Moulton method (corrector)

X(t+ h) = X(t) +
h

24

(
9F(t+ h, X̃(t+ h)) + 19F(t,X(t))

− 5F(t− h,X(t− h)) + F(t− 2h,X(t− 2h))
)

(115)
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